Math 1131

Name: _

Section: _____

Net Area and Integrals

- 1. The integral $\int_a^b e^{-x^2} dx$ is important in statistics,¹ but it is infamously hard to compute. Many statistics textbooks include a table which lists the value of the integral for different values of a and b. We will use Reimann Sums to generate one of these approximations.
 - (a) Express the integral $\int_0^1 e^{-x^2} dx$ as the limit of its Right Reimann Sums.
 - (b) Approximate $\int_0^1 e^{-x^2} dx$ using Right Sums and n = 1. Use a calculator to simplify.
 - (c) Approximate $\int_0^1 e^{-x^2} dx$ using Right Sums and n = 2. Use a calculator to simplify.
 - (d) Approximate $\int_0^1 e^{-x^2} dx$ using Right Sums and n = 4. Use a calculator to simplify.

(e) Approximate $\int_0^1 e^{-x^2} dx$ using Right Sums and n = 8. Use a calculator to simplify.

(f) How do these compare to the correct value of $\int_0^1 e^{-x^2} dx = .7468241...$?

¹This and other similar integrals are needed to compute the probability of events that follow a normal distribution. See, for example, http://en.wikipedia.org/wiki/Standard_normal_distribution#Cumulative_distribution.

2. What is the graphical meaning of $\int_0^{2\pi} \cos(x) \, dx$? Compute this area geometrically.

3. What is the graphical meaning of $\int_0^1 x + 2 \, dx$? Compute this area geometrically.

4. What is the graphical meaning of $\int_0^1 2x - 1 \, dx$? Compute this area geometrically.

5. What is the graphical meaning of $\int_0^2 2x - 1 \, dx$? Compute this area geometrically.

Name: ____

Section: _____

6. Determine if the following are **True or False**

(a)
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 True False

(b)
$$\int_{a}^{b} (c \cdot f(x)) dx = c \cdot \left(\int_{a}^{b} f(x) dx \right)$$
 True False

(c)
$$\int_{a}^{b} (f(x) - g(x)) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$
 True False

7. Suppose that
$$\int_{0}^{3} f(x) dx = 5$$
, $\int_{4}^{3} f(x) dx = 2$, and $\int_{4}^{6} f(x) dx = 10$. Find
(a) $\int_{0}^{4} f(x) dx =$

(b)
$$\int_{3}^{6} f(x) \, dx =$$

(c)
$$\int_0^6 f(x) \, dx =$$

8. Suppose that
$$\int_0^4 f(x) \, dx = 5$$
, $\int_3^4 f(x) \, dx = -2$, and $\int_3^6 f(x) \, dx = 10$. Find
(a) $\int_0^3 f(x) \, dx =$

(b)
$$\int_{4}^{6} f(x) \, dx =$$

(c)
$$\int_0^6 f(x) \, dx =$$

Section:

The Fundamental Theorems

1. Compute
$$\frac{d}{dx} \left[\int_5^x t^2 + 1 \, dt \right]$$
.

2. Compute
$$\frac{d}{dx} \left[\int_{1}^{x} \sin(5t) dt \right]$$
.

3. Compute
$$\frac{d}{dx} \left[\int_{-3}^{x} \sin(\cos(e^{t})) dt \right]$$
.

4. Suppose that the function f(x) is given by the following graph.

Let $A(x) = \int_0^x f(t) dt$. Compute the following

- (a) A(1) =
- (b) A(2) =
- (c) A(4) =
- (d) A'(1) =
- (e) A'(2) =
- (f) A'(4) =

Name: _____

Section: _____

Computing Integrals Quickly

1.
$$\int \left[\sin(x) + e^x - 2\cos(x) + 6x^2\right] dx$$

2.
$$\int_0^1 \frac{1}{x^2 + 1} \, dx$$

$$3. \int \frac{x^2 + x + 1}{x} \, dx$$

4.
$$\int_{-1}^{1} (x^2 + 3)(x - 1) dx$$

5.
$$\int \frac{x^{3/2} + \sqrt{x} + 1}{\sqrt{x}} dx$$

Name: _____

Section: _____

$$6. \quad \int x\sqrt{x^2+3}\,dx$$

$$7. \quad \int \frac{1}{x+1} \, dx$$

8.
$$\int \sin(5x) + 1 \, dx$$

9.
$$\int \cos(x) \cdot e^{\sin(x)} dx$$

10.
$$\int \left[\frac{1}{x^2+1} + \frac{1}{x+1}\right] dx$$